w TEXAS Evaluating Discourse in Structured Text Representations

The University of Texas at Austin

Elisa Ferracane, Greg Durrett, Jessy Li, Katrin Erk
elisa@ferracane.com, gdurrett@cs.utexas.edu, jessy@utexas.edu, katrin.erk@mail.utexas.edu

Structured Text Representations

Structured text representations such as trees generated by Rhetorical
Structure Theory (RST) are helpful for NLP end tasks including sentiment

analysis.
RST Dependency Tree:
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The big
downside [...]

however the
classes aren’t
early enough.

They offer it at
a great price.

On the upside
they have a lot
of classes.

Problem: Although RST trees are linguistically defined and motivated,
they are hard to exploit because annotations are scarce and limited by

genre.

a Does structured attention help?

Generally, no. It only significantly
helps one task.

Dataset Label Task

Yelp 1-5 Review sentiment
Debates 0/1 Vote prediction
Writing Quality (WQ) 0/1 Good writing

WQ Topic-Controlled 0/1 Good writing (topic-

(WQTC) controlled)
WSJ Sentence - Sentence order
Ordering (WSJSO) discrimination

Setup: Train 4x with different random seeds
and report mean (see paper for std dev, max)

B Performance gain with structured attention:

Accuracy Gain
with structured attention

Yelp Debates WQ

Adding structured attention helps only WQTC.
On Yelp, WQ, WSIJSO, there is no difference.
On Debates, the attention hurts.
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* Yang Liu and Mirella Lapata. 2018. “Learning Structured Text
Representations”. Transactions of the Association for Computational
Linguistics, 6:63—75.

e design changes and bug fix are made to L&L code and results are also
confirmed without these modifications; see paper for details.
* Code and data at https://github.com/elisaf/structured

Induced Trees

akin to RST discourse dependency trees.

Structured Attention
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Experiments

a Do the induced trees learn discourse?

n No. The model focuses on lexical cues.

H Tree analysis:

Induced Tree: |

TR

Vacuous tree: Flat, uninformative discourse
structure. Root is one sentence at beginning (or

(same YeIp review as above)

end) of text, and all other sentences are children.

B Tree statistics:

context for possible
immediate children
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...can be interpreted
as edge marginals of
dependency structure
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Solution...? Liu & Lapata (2018) train on text classification tasks and
use structured attention to induce dependency trees over the text,
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a Can we learn better structure?

No. Model changes induce better
trees, but are still far from discourse.

B Model modifications to increase reliance on

structure:

a. remove biLSTM over
sentences (-biLSTM)
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b. percolate context from
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Full  -biLSTM -biLSTM, -biLSTM,
+1perc +4perc

Removing biLSTM + adding 4 levels of
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Vacuous trees are
frequent, except in
WQTC.

B Root sentence analysis:

Trees are very
shallow; WQTC is
the least shallow.
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uuu, sterne, star, rating, deduct, O, edit
Debates oppose, republican, majority, thank
valley, mp3, firm, capital, universal
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Top PPMI words in root sentence are indicative
of label: rating or sentiment (Yelp), stance or
politeness (Debates), topic (WQ).

children percolation yields similar
performance as Full model.

B Tree statistics:
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Best model produces less vacuous and deeper
trees, but these are still far from ‘gold’ parsed
RST discourse dependency trees.



